Undo / Clear / Backspace

- $ightharpoonup 2^{nd} \rightarrow C$ with nothing selected will delete the entire output window
- \gt 2nd \Rightarrow C with anything selected will delete the selected item and everything higher (newer)
- ightharpoonup 3rd ightharpoonup C will display a popup dialog with additional clearing options

Catalog

> Access additional mathematical functions not available from the calculator buttons.

Mode

Configure WYSIWYG/RPN, Radians/Degrees, Exact/Approximate, decimal format, etc.

Functions

- ➤ Use := to define functions and *f* to use them.
- \triangleright In WYSIWYG, you can recall a variable immediately before using := or f to define or use a function other than "f".
- \triangleright In RPN, push the function variable and all function parameters to the stack, select the function variable, and use := or f to define or use a function other than "f".

Equals Operator

Equal[\bigcirc , \bigcirc]

Tools

Not available in version 1.0.

Cursor Keys

- ➤ Move the cursor left or right by one character
- You can also move the cursor by tapping the console in the desired location

Variables

- x, y, z, t buttons are the same as RCL x, y, z, t
- ➤ Use RCL to recall variables *a-w*
- ➤ Use STO to store values into variables
- > Use DEL to reset variables to undefined

Logarithms

 $Log[\Omega]$, $Exp[\Omega]$, $Log10[\Omega]$ or $Log[\Omega, \bullet]$, $Power[10, \Omega]$

- ightharpoonup In WYSIWYG, \log_n computes \log_{10} by default, but you can move the cursor to the subscript and enter a different base.
- In RPN, \log_n always requires the base to be provided. For \log_{10} , enter 10 on the console, or use $\log 10 \, \square$ in the catalog.
- \triangleright ×10^{\square} is useful both for entering numbers in scientific notation and as the inverse of \log_{10} .

Trigonometry Functions

$$Sin[O]$$
, $ArcSin[O]$, $Cos[O]$, $ArcCos[O]$, $Tan[O]$, $ArcTan[O]$

– or –

Sin[\square *Degree], ArcSin[\square]/Degree, Cos[\square *Degree], ArcCos[\square]/Degree, Tan[\square *Degree], ArcTan[\square]/Degree

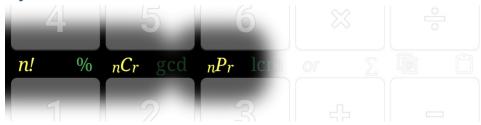
➤ Change between radians and degrees operations in MODE → Angle Mode

Constants

Pi, E, FromDMS[$\{ •, •, • \}$]*Degree or FromDMS[$\{ •, •, • \}$], Infinity, I, FromPolarCoordinates[$\{ \bigcirc, \bigcirc \}$] or FromPolarCoordinates[$\{ \bigcirc, \bigcirc \}$]

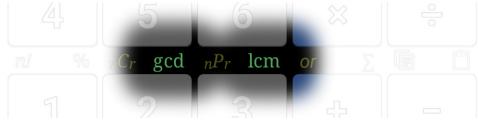
➤ Change between radians and degrees operations in MODE → Angle Mode

Numerical Functions


Inverse [O], Mod [O, O], Abs [O], Sign [O]

Strings

String[\square], StringJoin[\square , \square]


Probability Functions

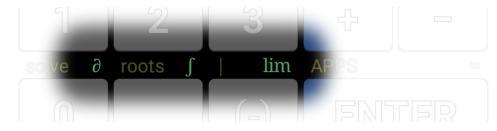
Factorial[□]

- \triangleright % multiplies by constant $\frac{1}{100}$.
- \blacktriangleright nCr calculates the number of possible combinations of n items taken r at a time. The order of objects is not important. This is the same calculation as $Binomial[\Box, \Box]$.
- \triangleright nPr calculates the number of possible permutations of n items taken r at a time. The order of objects is important.

Number Theory

 $GCD[\Box, \Box, ...], LCM[\Box, \Box, ...]$

Algebra Functions


Solve $[\Box, \Box, \bullet]$, Roots $[\Box, \Box]$, Block $[\{...\}, \Box]$

➤ Use | to locally define variables for a single calculation. For instance:

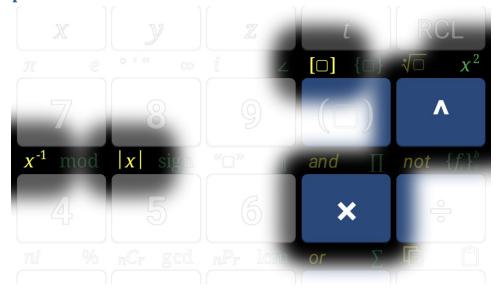
$$a^2 + b^2 = c^2 \Big|_{c = 25}^{a = 24}$$

$$b^2 = 49$$

Calculus Functions

 $D[O, \{O, \bullet\}], Integrate[O, \{O, \bullet, \bullet\}], Limit[O, O \rightarrow O]$

Parentheses (WYSIWYG only)

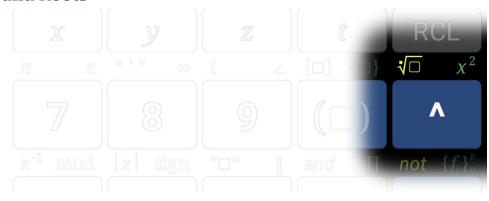


$R \downarrow / R \uparrow (RPN only)$

- > Rolls the selected item and everything higher (newer) on the stack.
- \triangleright If nothing is selected, performs x \rightleftharpoons y.

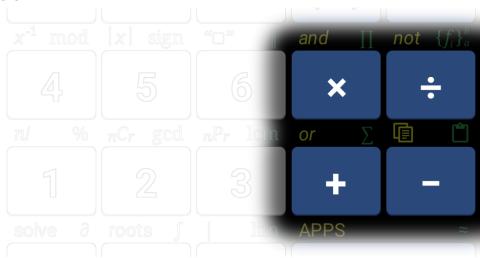
Matrix Operations

Matrix[\bigcirc], MatrixPower[\bigcirc , \bigcirc], MatrixPower[\bigcirc , 2], Inverse[\bigcirc], Det[\bigcirc], Dot[\bigcirc , \bigcirc]


- ightharpoonup In WYSIWYG, start creating a matrix using $2^{nd}
 ightharpoonup [\Box]$, then enter the desired values. The matrix will automatically expand as needed.
- ightharpoonup In RPN, create matrices by constructing a list of lists. For instance $\{\{a,b\},\{c,d\}\}$ will become $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Lists

- ➤ In WYSIWYG, start creating a list using $3^{rd} \rightarrow \{\Box\}$, then enter the desired values. The list will automatically expand as needed.
- ➤ In RPN, enter the desired list member as separate lines on the stack. Select the first item for the new list and $3^{rd} \rightarrow \{\Box\}$. (If nothing is selected, a list will be constructed of one item.)


Powers and Roots

Power[\square , \square], Sqrt[\square] or Root[\square , \square], Sqr[\square]

- ➤ In WYSIWYG, $\sqrt[4]{\Box}$ computes $Sqrt[\Box]$ by default, but you can move the cursor above the radical to enter a different root.
- ightharpoonup In RPN, there are separate operations for \sqrt{x} and $\sqrt[x]{y}$. For x^2 , use ^ with 2 on the console, or use $\operatorname{Sqr}[\Box]$ from the catalog.

Arithmetic

Plus[O, O, ...], Minus[O, O], Times[O, O, ...], Divide[O, O]

Logic Operators

And [O, O], Or [O, O], Not [O]

Iterating Functions

 $Sum[\bigcirc, \{\bigcirc, \bigcirc, \bigcirc\}], Product[\bigcirc, \{\bigcirc, \bigcirc, \bigcirc\}], Table[\bigcirc, \{\bigcirc, \bigcirc, \bigcirc, \bullet\}]$

Copy / Paste

- > Copy the selected or most-recent item to the clipboard in text format
- > Paste will convert back to mathematical format if possible, or paste as text if conversion fails

Apps

- Access additional apps for Acron Calculator
- > Visit the Acron Store where additional apps can be purchased
- > Configure your Acron Calculator subscription

 \approx

${\tt N\,[\, \Box\,]}$

- > If Exact/Approx is set to Auto or Exact, forces the last calculation to be recalculated as Approx
- > If Exact/Approx is set to Approx, forces the last calculation to be recalculated as Auto